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ABSTRACT 
We recommend suitable transport protocols for an 
aeronautical network supporting Internet and data 
services via satellite. We study the characteristics of an 
aeronautical satellite hybrid network and focus on the 
problems that cause dramatically degraded performance 
of the Transport Protocol. We discuss various 
extensions to standard TCP that alleviate some of these 
performance problems. Through simulation, we identify 
those TCP implementations that can be expected to 
perform well. Based on the observation that it is 
difficult for an end-to-end solution to solve these 
problems effectively, we propose a new TCP-splitting 
protocol, termed Aeronautical Transport Control 
Protocol (AeroTCP). The main idea of this protocol is 
to use a fixed window for flow control and one 
duplicated acknowledgement (ACK) for fast recovery. 
Our simulation results show that AeroTCP can maintain 
higher utilization for the satellite link than end-to-end 
TCP, especially in high BER environment. 
 

1 INTRODUCTION 
World airline passenger traffic growth is currently 
approximately 6% per annum and this figure is likely to 
drop only slightly in the next fifteen years. The current 
National Airspace System (NAS) is quickly becoming 
overburdened by increases in air traffic because of the 
old technologies and legacy systems [1]. The current 
systems do not support improvements needed for 
increased capacity, safety and security, not to mention 
the demands of new data link applications. 
 
Recognizing the potential for significant improvements 
in over-ocean coverage afforded by the use of satellite 
technology for aeronautical communications, the airline 
industry is developing a design for a global satellite-
based communications system to meet the needs of the 
aviation industry [2]. The expected advantages of the 
satellite systems for aeronautical communications also 
include high communication capacity, low message 
propagation delay, suitability to free flight concepts, 
and other economic benefits. 
 
Several Companies (e.g., Inmarsat, Iridium, Boeing) 
have announced plans to use satellite technologies to 

provide commercial broadband data services for airline 
passengers [3, 4]. These systems are expected to offer 
Internet access and to support virtual private networks 
(VPN) for passengers in flight. However, the 
performance of data communications protocols and 
applications over such systems is the subject of heated 
debate in the research community, especially the 
transport protocol in the Internet TCP/IP protocol suite 
[5]. Some researchers insist that TCP will work suitably 
in a satellite environment, while others have suggested 
satellite specific protocol options for improved 
performance, and still others claim that TCP cannot 
work effectively over satellite channels.  
 
In this paper, we will evaluate how well TCP performs 
in aeronautical satellite networks. The remainder of the 
paper is organized as follows: in section 2, we discuss 
the future aeronautical satellite systems that plan to 
provide Internet access for passengers, focus on the 
special characteristics of aeronautical satellite 
environment that impact transport layer protocol 
performance. In section 3, we describe various TCP 
flavors and TCP extension that alleviate some of TCP 
performance problems in satellite environment. 
Through analysis and simulation, we identify those 
TCP implementations that can be expected to perform 
reasonably well for Internet applications in satellite 
networks. Based on the observation that it is difficult 
for an end-to-end solution to solve the performance 
problems effectively in the satellite hybrid networks, 
we next investigate in section 4 the improvement by 
using TCP splitting protocol in satellite gateway. We 
proposed a new splitting based TCP protocol for 
satellite connection, which we called AeroTCP. This 
new protocol uses a fixed window for congestion 
control and flow control, use one duplicated ACK for 
fast recovery. Based on the simulation result, we 
conclude that our splitting protocol has significant 
improvement over end-to-end TCP solution in term of 
link utilization and response time. This AeroTCP is the 
suitable transport protocol for the future aeronautical 
satellite networks. 
 
 
 



 

2 AERONAUTICAL SATELLITE 
NETWORK 

 

 
Figure 1 Aeronautical Satellite Network 

 
The future aeronautical satellite systems will offer 
Internet connections at up to broadband (tens of Mbps) 
data rates via networks of GEO or LEO satellites [6]. 
Here, we consider architecture based on packet 
switching that is fully compatible with the TCP/IP 
protocol suite. Figure 1 illustrates the general topology, 
in which users on aircraft access the Internet via the 
satellite system. 
 
This system will be composed of three major segments: 
cabin segment with on-board networks, space segment 
for interconnection of the cabin with the terrestrial 
networks, ground segment which provides the 
interconnection to the terrestrial personal and data 
networks as well as the Internet backbone. 
 
For the near-term future and any evolutionary approach 
towards aeronautical multimedia communications, a 
broadband network based on GEO satellites seems to be 
the first option. However, a GEO solution for the 
purpose of future broadband communications to aircraft 
in flight reveals several problems, such as the coverage 
problems at higher latitudes and the extreme antenna 
steering requirements at lowest elevation angles. With a 
LEO or MEO solution, in particular, potential system 
capacity limitations and latency for real-time 
communications could be reduced. On the other hand, 
besides system costs, especially networking complexity 
tend to increase while moving to lower orbits. Satellite 
handover will become a major issue, and inter-satellite 
links may be necessary at least for LEO constellations 
to provide connectivity over large ocean areas. Since 
we are focus on the transport protocol and for 
simplicity, we will use GEO bent-pipe satellite for our 
analysis and simulation. 
 
The service scenario considers travelers in aircraft on 
the move. Since people are becoming more and more 

used to their own communications equipment, such as 
mobile phones and laptops with Internet connection, 
either through a wired or wireless network interface. 
Thus the cabin segment will consist of wireless access 
technologies (Such as Blue tooth, Wireless LAN) as 
well as conventional IP fixed wired networks.  
 
The main characteristics of the end-to-end path that 
affect transport protocol performance are long 
propagation delay, large bandwidth delay product, high 
bit error rate, and bandwidth asymmetry. If part of the 
communication path includes a satellite channel, these 
parameters can vary substantially from those found on 
wired networks.  
 
Long propagation delay: The three main components 
of delay are propagation delay, transmission delay, and 
queuing delay. In the broadband satellite case, the 
dominant portion is expected to be propagation delay. 
GEO satellite is about 36,000km above the earth. The 
propagation delay from the earth up to the satellite and 
from the satellite down to the earth is about 125ms. 
Therefore a typical round trip time (RTT) for two-way 
system is about 500ms plus the delay for terrestrial 
networks.  
 
Large bandwidth-delay product: We assume here 
that the GEO satellite operates on K/Ka band to provide 
broadband connection for aircraft. The bandwidth delay 
product (e.g., 20Mbps*580ms RTT) in this system is 
very large. To fully utilize such channel, we need to put 
that much of data (equal to bandwidth-delay product) 
into the link. Since TCP will send new data until it 
receives the ACKs for old data, that means TCP 
window should be at least the bandwidth delay product.  
 
High bit error rate: In satellite channel, bit error rate 
of the order of 10-6 are often observed. This is primarily 
because the existing systems with legacy equipment 
and many existing transponders were optimized for 
analog voice and video services. New modulation and 
coding techniques, along with higher-powered 
satellites, should help to make bit error rate very low 
for GEO system. 
 
Bandwidth asymmetry: Satellite networks can be 
asymmetric in several ways. Some satellite networks 
are inherently bandwidth asymmetric, such as those 
based on a direct broadcast satellite (DBS) downlink 
and a return via a dial-up modem line. For purely GEO 
or LEO system, bandwidth asymmetries may exist for 
many users due to economic factors.  
 
In addition, an aeronautical satellite network has some 
specific network characteristics. 
 



 

Mobile Aircraft: In this network, passengers inside the 
aircraft connect to the aircraft gateway using their own 
equipments via wired or wireless connections. The 
aircraft gateway connects to the ground network via a 
bent-pipe satellite. The mobility of the aircraft will put 
addition track requirements for the antennas on the 
aircraft and the satellite. 
 
En-route Low BER: When the aircraft is en-route, 
there are no obstacles (such as rain, cloud) between the 
aircraft and the satellite. It is possible that the satellite 
link maintains connectivity and achieves “fiber-like” 
quality (BER of 10-10) most of the time. 
 
FIFO Satellite Channel: The bent-pipe satellite link is 
a FIFO channel and there is no out-of-order delivery 
between satellite gateways. Congestion over the 
satellite link is impossible if the packets are sent at the 
rate of the satellite bandwidth.  
 
Intermittent connectivity: Due to handover and 
relative geometric position changes of aircraft and 
satellites, intermittent connectivity are expected in 
aeronautical network with typical during of several 
seconds to several minutes. 
 
Variable Round Trip Times: Because the aircraft fly 
around the world, the propagation delay to and from the 
satellite varies over time. The variance of the RTT can 
be as large as 80ms. The impact of the variation to TCP 
is an open problem in literature.  
 
In summary, we assume the aeronautical satellite 
networks characterized by high BER, high bandwidth 
delay product, long delay. Although the K/Ka band 
satellite can provide higher bandwidth than Ku band, 
satellite bandwidth is still a scarce resource compared 
to the bandwidth provided by optical fibers in the 
terrestrial networks. Therefore, we assume the satellite 
link is the bottleneck of the system. 
 

3 END-TO-END TCP PERFORMANCE 
In this section, we describes basic TCP operation, 
identifies protocol options helpful to improve TCP 
performance in satellite environment. We also quantify 
how well different TCP implementations perform in a 
satellite environment for Internet services. 
 
3.1 TCP OPERATION 
TCP is a connection-oriented, end-to-end, process-to-
process reliable transport protocol [7]. TCP source and 
destination port combined with IP source and 
destination addresses uniquely identity each TCP 
connection. There are several mechanisms in TCP to 
ensure those functions, such as flow control, congestion 
control and error control. 

Flow control: TCP uses a sliding window to achieve 
flow control. The TCP receiver sets the receive window 
(RCVWND) field in the acknowledgement to its free 
buffer size so that the sender will never overflow the 
receiver’s buffer. 
 
Congestion control [8]: The TCP sender maintains a 
state variable CWND for congestion window size. 
While RCVWND is used to guard that the sender will 
not overload the receiver buffer, the CWND is used to 
guard that the sender will not overload the network. The 
TCP sender can send at most the minimum of 
RCVWND and CWND window worth packets without 
receiving any ACK. In the most popular TCP Reno, 
there are four algorithms used for congestion control, 
which are slow start, congestion avoidance, fast 
retransmit, and fast recovery. Slow start is used upon 
the start of a new connection to probe the network 
bandwidth, it increases the CWND by one Maximum 
Segment Size (MSS) when an ACK is received, which 
results in increasing congestion window exponentially. 
TCP stays in slow start until its CWND is greater than 
the slow start threshold. After that TCP gets into 
congestion avoidance, it increases CWND about one 
MSS per round trip time (RTT). Fast retransmit 
algorithm is triggered when a fixed number of duplicate 
acknowledgements (usually 3) are received. TCP 
retransmits the potential lost packet indicated by the 
acknowledgement and cuts its CWND to half. After 
that, it inflates its CWND by one MSS when a duplicate 
acknowledgement is received. If there is one and only 
one packet lost in a single window, the inflation can 
increase the CWND to the original CWND before the 
loss after about half RTT. After that TCP can send a 
new packet when each duplicate acknowledgement is 
received if allowed by the RCVWND. Finally it will 
send half a window new packets when it receives the 
first non-duplicate acknowledgement. TCP Reno 
doesn’t like TCP Tahoe, which does not have the fast 
recovery algorithm and sends half a window packets in 
burst after the loss has been recovered. 
 
Error control: Error control is the main component of 
reliable protocols, which includes error detection and 
error recovery. TCP uses acknowledgement packet, 
timer and retransmission to achieve error control. TCP 
uses cumulative acknowledgement, which means when 
a packet gets lost, it prevents the acknowledgement 
from being advanced and the window cannot slide until 
the lost packet is recovered. The sliding window 
mechanism actually ties the flow control, congestion 
control and error control together and it becomes 
vulnerable when there are losses due to congestion loss 
and packet corruptions in the network. 
 
 



 

3.2 TCP FLAVORS AND EXTENSION 
As originally specified, TCP did not perform well over 
satellite networks (or high latency networks in general) 
for a number of reasons related to the protocol syntax 
and semantics. Over the past decade, a number of TCP 
flavors and extensions have been specified which 
improve upon the performance of the basic protocol in 
satellite environments [9, 10]. 
 
Large Initial Window [11]: For a connection with 
large RTT, TCP spends a long time in slow start before 
reaching the available bandwidth. The time taken by 
TCP slow start to reach the satellite bandwidth (SatBW) 
is about RTT * log2 (SatBW * RTT) when every TCP 
segment is acknowledged. For short transfers, they 
could be finished in slow start, which obviously does 
not use the bandwidth efficiently. Some researchers 
propose to use a large initial window up to 4380 bytes 
(or a maximum of 4 segments) rather than 1 segment. 
Thus Files less than 4K bytes (many web pages are less 
than this size) can finish their transfers in one RTT 
rather than 2, 3.  
 
Window Scaling [12]: In TCP protocol syntax, the 
receiver advertised window in the TCP header cannot 
be more than 64K bytes, which limits the two-way 
throughput to roughly 1Mbps in GEO satellite 
networks. Window Scaling is proposed to solve this 
problem, which significantly increases the amount of 
data that can be outstanding on a connection by 
introducing a scaling factor to be applied to the window 
field. This is particularly important for the satellite 
links, which require large windows to fully utilize their 
high bit rate. 

 
Selective Acknowledgements (SACK) [13]: Because 
TCP Reno (popularly used in many systems) treats all 
losses as congestion in the network. The link layer error 
can causes TCP to drop its window to a small size and 
leads to poor performance. TCP SACK can convey 
non-contiguous segments received by the receiver in 
the acknowledgements so that the sender can recover 
error much faster than TCP Reno, which well know can 
recover only on loss per RTT.  
 
Path MTU discovery [14]: This option allows the TCP 
sender to probe the network for the largest allowable 
Message Transfer Unit (MTU). Using large MTUs is 
more efficient to reduce the overhead and helps the 
congestion window to open faster.  
 
Forward Error Correction (FEC): FEC is usually 
used in satellite communication to reduce the bit error 
rate. However, FEC consumes some bandwidth by 
sending redundant information together with the data 
and transforms the original random error nature to one 
with burst error. 
 
In this work, we are interested in quantifying the 
performance of TCP implementations with those 
standard enhancements. Note that even though some of 
these options have been specified for over several 
years, not all implementations use them today. It is 
important to emphasize that all of the above 
implementations would be regarded as conformant to 
the TCP standards; in practice, many more variants of 
TCP exist. 
 

 
Figure 2 Experiment setup for End-to-end TCP solutions 



 

3.3 END-TO-END TCP PERFORMANCE 
In this section we study how well different TCP 
implementations perform in aeronautical satellite 
network for Internet services. The detail of the 
simulation setup can be found in [15]. 
 
The experiment setup of this simulation is shown in 
figure 2. A K/Ka-band GEO satellite operates in the 
microwave switch mode, in which it behaves as a bent-
pipe transponder. Its spot beam is used to establish the 
communication link between the satellite and the fixed 
ground terminal, which provides the interconnection to 
Internet backbone. The aircraft, which includes on-
board network, communicates with satellite by its 
tracking antenna. The client on the aircraft will 
download files from the ground server by using FTP 
during the flight. For each scenario, the forward and 
return links have data rate 5Mbps and 1Mbps, 
respectively. Both the client and the server have TCP 
buffer size of 65536 bytes.  
 
To maintain high throughput for large file transfers, the 
TCP congestion window must be large. This implies 
that the congestion avoidance and loss recovery 
mechanisms are very important in determining 
performance. In this simulation, we examine the 
performance of four variants of TCP loss recovery and 
congestion control: Tahoe (Fast Retransmission), Reno 
(Fast Retransmission and Fast Recovery), SACK (Reno 
+ Selective ACK), and Window Scaling (SACK + 
Window Scaling) [16]. 
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Figure 3. TCP performance for satellite link (1.6MB) 

 
Figure 3 shows the TCP performance for the satellite 
link with FTP file size of 1.6MB. We can see that the 
response time to download a file increases 
exponentially with the BER. That’s because the TCP 

congestion window cannot recovery quickly when there 
are lots of packet losses (high BER). For same BER, the 
Windows Scaling and SACK have better performance 
than Reno, Tahoe, where Tahoe need the largest 
response time to download the same file. The 
differences of response time are more obvious when the 
BER becomes large.  
 
We see that Window Scaling and SACK have almost 
same performance. That is because in these scenarios, 
both the client and the server use TCP buffer size of 
65536 bytes. The congestion window of TCP 
connection cannot be larger than the buffer size. 
Window scaling will have better performance than 
SACK when we have large buffer size. Figure 4 shows 
this effect. Here the client will download file of size 
1.6MB. When the receiver’s buffer size is less than 
65536 bytes, the Window scaling and SACK have same 
performance. Actually window scaling is not used in 
this case. When the buffer size is larger than 65536 
bytes, window scaling needs less time than SACK to 
download the same file. The difference in the response 
time will become more obvious in low BER and for big 
file. 
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From previous results, we can conclude that by 
standard TCP with some enhancements for the satellite 
communications system with our configuration and 
system architecture, basic communication requirements 
can be meet. If TCP/IP protocols are going to be 
adopted in the future satellite system, some 
modifications of the protocol stacks will be necessary to 
achieve better performance. In particular, TCP SACK 
with window scaling option has better performance 
than other TCP flavors in our scenario. It also achieves 
high link utilization when the link BER is relative low. 
However, when the link BER becomes high, the end-to-



 

end solutions cannot solve those problems effectively. 
We will discuss this problem in next section.  
 

4 TCP SPLITTING PROTOCOL 
Although TCP can work well over GEO satellite links 
under certain conditions, there are cases for which even 
the best end-to-end modifications cannot ensure good 
performance. Furthermore, in an actual network with a 
heterogeneous user population, users and servers cannot 
all be expected to be running satellite-optimized 
versions of TCP. This has led to the practice of splitting 
transport connections. In this section we describe 
unsolved problems by use end-to-end TCP solutions, 
the design of our splitting protocol, and the 
performance comparison of the splitting protocol and 
end-to-end solutions. 
 
4.1 Unsolved problems 
Despite the progress on improving TCP, there remain 
some vexing attributes of the protocol that impair 
performance over satellite links. The end-to-end 
enhancements cannot solve these problems, or not very 
effectively. 
 
Small operational window: Satellite TCP connections 
need large windows to fully utilize the available 
bandwidth. However it takes much longer for satellite 
TCP connections than for terrestrial TCP connections to 
reach the target window size because of the large 
propagation delay and the slow start algorithm in TCP. 
And the window multiplicative decrease strategy makes 
the hard gained large TCP window very vulnerable to 
congestion. The misinterpretation of link layer 
corruption as congestion makes this situation even 
worse [17]. In the best case, the packet loss does not 
cause timeout and TCP can stay in congestion 
avoidance phase rather than in slow start, the additive 
increase strategy makes the window to grow very 
slowly. From the above observations, we can see that 
even if the window scaling option is available, it is 
difficult for satellite TCP connections to actually 
operate with large windows.  
 
Asymmetric link: With respect to transport protocols, 
the forward throughput achievable depends not only on 
the link characteristics and traffic levels in the forward 
path but also on those of the reverse path. The 
congestion in reverse path could lead to poor 
performance in the forward link because TCP uses 
ACKs to clock out data. To alleviate this problem, 
ACK filtering was proposed to drop the ACKs in the 
front of the IP queue by taking advantage of the 
cumulative acknowledgement strategy in TCP [18]. The 

situation is even worse for two-way transfers. When the 
users are sending data and browsing the web at the 
same time, a lot of data packets could be queued in 
front of ACKs in a FIFO queue, which increases the 
ACKs delay dramatically. In this case, a priority queue 
can be used to schedule the ACK to be sent first. 
 
TCP fairness: For bulk transfer, TCP throughput is 
inverse proportional to RTT, so TCP connection with 
large RTT does not get its fair share of the bandwidth 
when it competes with the connections with shorter 
RTT [19]. It is difficult for end-to-end solutions to 
solve this fairness problem. Using the Constant-rate 
additive increase policy can correct this bias. However, 
it is difficult to implement in a heterogeneous network. 
 
Because the feedback information of the satellite is 
either delayed too long or too noisy or both, end-to-end 
schemes cannot solve these problems very effectively. 
An alternative to end-to-end schemes is to keep the 
large window of packets in the network such as at the 
satellite gateway between the satellite and aircraft 
platform. Considering the interoperability issue, we 
propose a connection splitting based scheme to solve 
those problems.  
 
4.2 Splitting protocol 
The idea behind split connections is to shield high-
latency or noisy network segments from the rest of the 
network, in a manner transparent to applications. Figure 
5 illustrates the general split case, in which an end-to-
end TCP connection is split into 3 connections at the 
aircraft gateway and ground gateway. One connection 
is from the Internet server to the ground gateway, 
another one is from the ground gateway to the aircraft 
gateway, and the last one is from the aircraft gateway to 
the client in aircraft. We consider the data transfer from 
the Internet servers to the client in aircraft. Ground 
gateway sends premature acknowledgements to the 
Internet servers and takes responsibility to relay all the 
acknowledged packets to the aircraft gateway reliably. 
The aircraft gateway does the same job to relay the data 
to the client.  
 
The goal of splitting connections is for end users to be 
unaware of the presence of an intermediate agent, other 
than improved performance. From the perspective of 
the hose in the wide-area Internet, it is communicating 
with a well-connected host with a much shorter latency. 
For the satellite link between the ground gateway and 
the aircraft gateway, a satellite optimized transport 
protocol can be used.  
 

 



 

 
Figure 5 TCP Splitting protocol for Aeronautical Satellite Networks 

 
Because GEO satellite channel is a FIFO channel, there 
is no out-of-order routing. And congestion over the 
satellite link is impossible if the packets are sent at the 
rate of the satellite bandwidth. The above observations 
motivate us to decouple the congestion control and 
error control in TCP first and then design more efficient 
and effective congestion and error schemes with our 
specific network characteristics in mind. We design a 
new TCP splitting protocol, which we called 
Aeronautical Transport Control Protocol (AeroTCP), 
for the satellite connection. The main idea is to use one 
duplicate ACK to trigger the fast retransmission at the 
satellite gateway and to use a fixed window size for the 
satellite TCP connection. This implementation of this 
idea will be discussed in detail in the following. 
 
Flow Control: We still use a sliding window for flow 
control, however, here the window are fixed for each 
satellite connection. For a normal router, they only have 
the functions up to IP layer, while the satellite gateway 
is able to process TCP packets. All the TCP packets 
received from the servers are forwarded to the TCP 
received buffer of the ground gateway and they are 
moved from the received buffer to send buffer for 
transmission. The receive buffer and send buffer can be 
implemented by one physical buffer. 
 
The buffer size assigned to each connection at the 
satellite gateway has a direct impact on the end-to-end 
TCP throughput. Consider the traffic from Internet 
server to the client on aircraft, assume there is only one 
connection in this system, the buffer size assigned to 
the TCP connection is Buff and the effective satellite 

bandwidth is SatBW. The date in the satellite pipe is 
SatWin and the advertised receiver window for the 
server is RecvWin. The round trip time for the satellite 
connection is SatRTT and for the ground connection is 
GndRTT. Then the system reaches the steady state, the 
input rate of the queue at the ground gateway should be 
equal to the output rate of the queue, i.e., RecvWin / 
GndRTT = SatWin / SatRTT. The throughput of the 
connection is min (SatBW, Buff / (SatRTT + 
GndRTT)) and the backlog packets are max (o, Buff – 
SatBW * (SatRTT + TerrRTT)) [20]. From the above 
analysis, we can see that the buffer size can become the 
bottleneck of the end-to-end TCP performance if it is 
less than the bandwidth delay product. However when 
the buffer size is greater than the bandwidth delay 
product, there are packets backlogged at the satellite 
gateway and these backlogged packets cannot 
contribute to the throughput and only increase the 
queuing delay.  
 
When there are multiple connections in this system, the 
bandwidth available to each connection is a function of 
the number of connections and their activities. For 
simplicity, we assign each connection a static peak rate, 
which is the maximum bandwidth it can achieve and is 
much smaller than the total satellite bandwidth, and the 
buffer size is set corresponding to that peak rate. 
 
We assume large but not infinite buffer is available at 
the client and the TCP flow control is still enforced so 
that the gateway will not overflow the receiver’s buffer.  
 



 

Congestion Control: For the satellite connections, the 
satellite link bandwidth to be shared among them is 
fixed and known. Besides the number of connections 
and the traffic arrival pattern are known. All this 
information is available at the satellite gateway. 
Therefore there is no need to use slow start to probe the 
bandwidth and use additive increase and multiplicative 
decrease congestion avoidance to guarantee fair 
resource sharing as in the distributed case. 
 
In our scheme, we cancel all the congestion control 
algorithms in TCP. The gateway can send packets as 
long as there are packets in the buffer and the receiver’s 
window allows sending. Also there is no need to 
exponentially back off the timer after timeout because 
congestion is impossible over the satellite link. Timer is 
used only for error recovery. As long as there are 
packets buffered at the satellite gateway, the satellite 
link can be fully utilized. When the traffic load 
increases, the buffers begin to be filled up and the 
congestion is back pressured to the sources through the 
advertised receiver windows. When the traffic load 
decreases, the buffers begin to be emptied and larger 
advertised receiver windows are sent to the source so 
the sources can speed up. This way satellite link 
efficiency is achieved.  
 
Error Control: TCP depends on duplicate 
acknowledgements and timer for error control because 
out of order packet arrivals are possible in the wide area 
networks, the fast retransmit algorithm is triggered after 
three rather than one or two duplicate 
acknowledgements are received. The three duplicate 
acknowledgements requirement puts a high burden on 
the return channel bandwidth. The high bit error rate of 
the satellite link can cause multiple packet losses in one 
RTT and may lead to timeout. When the retransmitted 
packets are lost, timer could be the only means for error 
recovery. However, timer has to be conservative and is 
usually set much larger than the round trip delay to 
make sure the packet does leave the networks. These 
conservative loss detection and recovery schemes in 
TCP are not effective in satellite networks and should 
be enhanced. 
 
In our scheme, we explore the specific characteristics of 
our network. Firstly, because congestion is impossible 
for the satellite connections and any loss must be 
caused by the link layer corruption. So the error 
recovery scheme can operate independently with the 
congestion control scheme. Secondly, the satellite link 
is a FIFO channel and out of order packet arrivals are 
impossible.  
 
We design a scheme for error control by using one 
duplicated ACK for fast recovery. We keep track of the 

packets in sequence space of all acknowledged packets. 
Whenever a duplicated acknowledgement is received, 
we just assume that packet is lost and retransmit it. 
During the recovery, we use the same idea as in TCP 
NewReno [21]. We use partial ACKs to calculate the 
burst loss gap and send all the potentially lost packets 
beginning from the partial acknowledgement number. 
Although it is possible that the sender could retransmit 
packets that have already been correctly received by the 
receiver, it is more effective in recovering burst errors 
(popular in satellite environment). Timer is still used as 
the last resort for loss recovery, however, after timer 
expires, two copies of the lost packet are sent to 
increase redundancy. 
 
4.3 TCP Splitting Protocol Performance 

 
Figure 6 Experiment setup for TCP splitting Protocol 

 
To test our splitting scheme, we setup a simulation 
model as shown in figure 6. A client downloads a file of 
1.6M bytes from a server via a satellite link. The link 
delay between the hybrid gateway and the client is 
250ms and the link delay between server and gateway 
is 40ms. Therefore the RTT between the server and the 
client is 580ms. The satellite link bandwidth is DS1 
(1.544Mbps) and the ground link is 10Mbps. The 
transport protocol for the ground connection is normal 
TCP SACK, while we use our TCP splitting scheme for 
the satellite connection. We assume the satellite link 
between the gateway and the client is noise channel 
with various bit error rate, while the ground link has no 
error. The statistics we collect is link utilization and 
link throughput of the two downstream links. 
 
Figure 7 shows the utilization for our scheme and for 
TCP connection splitting scheme. The TCP connection 
splitting scheme uses TCP SACK for both the satellite 
connections and terrestrial connections. When the bit 
error rate is very low, both schemes can achieve very 
high throughput since the TCP can actually operate 
with large window. For TCP connection splitting 
scheme, when the bit error rate increases up to 10-6, the 
link layer corruption causes the satellite TCP to drop its 
congestion window, which leads to degraded 
performance. When the BER increases to 10-5, the 



 

retransmitted packets can get lost again and TCP may 
have to wait for the timeout to recover the error. After 
timeout, the congestion window is set to one and TCP 
enters slow start and the link utilization is very low. 
While for our scheme, the TCP can send packet at the 
rate of bandwidth as long as there are packets in the 
buffer and the receiver has enough buffer. The 
utilization is drop when the BER increases to 10-5, 
which is because lots of packets are lost due to layer 
error corruptions. 
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Figure 7 Utilization for different bit error rates 
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Figure 8 Response time for FTP application 

 
It is important to compare our scheme with the end-to-
end TCP solutions. Figure 8 shows the FTP response 
time for end-to-end TCP, TCP splitting, and our scheme 
to download a file of 1.6M bytes. The TCP splitting 
uses TCP SACK for both the satellite connections and 
terrestrial connections. We can see that the TCP 
splitting has better performance than end-to-end TCP 
because in TCP splitting, the terrestrial connection can 

operate with large window and send packets to gateway 
faster due to no error. It is interesting that performance 
is improved if we just use splitting protocol, although 
not noticeable when the BER is high. In the other hand, 
our scheme has the best performance than both end-to-
end TCP and TCP splitting. This is because both the 
satellite connection and terrestrial connection of our 
scheme can operate with large window. The response 
time is more obvious when the BER increase to 10-5.  
 
In summary, we have described the design and 
performance of a satellite-optimized transport protocol, 
AeroTCP. AeroTCP inherently incorporates many of 
the features that have been proposed or adopted as TCP 
options for improved satellite performance. AeroTCP 
allows for the use of rate-based congestion control and 
is well matched to satellite networks.  

 
5 CONCLUSIONS 

In this paper, we have investigated the performance of 
IP-Compatible transport protocols over satellite links 
from several perspectives. We observed degradation in 
TCP performance for large bandwidth-delay product 
networks such as aeronautical satellite systems. If the 
right TCP options are used and congestion is light, TCP 
can work well for large file transfers even over GEO 
links. Because it is difficult for an end-to-end TCP 
solution to solve the problems in the aeronautical 
satellite networks, we propose a connection splitting 
based solution, AeroTCP, which is designed for the 
satellite connections by taking advantage of the specific 
characteristics of the satellite networks. Our simulation 
results show that our scheme can maintain high 
utilization of the satellite link and has better 
performance than end-to-end solutions. 
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Introduction

Significance
Increased air traffic volume vs. old communication 
system
Use Satellite technology for aeronautical 
communication
Internet data services for passengers on flight
TCP/IP protocol support

Objectives
Evaluate TCP performance on aeronautical network
Design a better transport protocol 



4

Aeronautical Satellite Network
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Network Characteristics

Satellite Channel Characteristics
long propagation delay, 
large bandwidth delay product,
occasional high bit error rate, 
bandwidth asymmetry

Aeronautical network
Mobile Aircraft
En-route Low BER
FIFO Satellite Channel
Intermittent connectivity
Variable Round Trip Time
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TCP Operation
Flow Control: Sliding window
Received window=receiver Buffer size 

Congestion Control: Congestion 
window

Slow start
Congestion avoidance
fast retransmission
fast recovery

Error Control: 
acknowledgement, timer, and 
retransmission
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End-to-End TCP solution

Priority QueueIncrease ACKs delayBandwidth 
asymmetry

Can not use fix window,
TCP SACK for recovery

Drop its congestion 
window to a small size

High bit error rate

Window Scaling (multiple 
losses in one window)

16bits WindowLarge bandwidth-
delay product

Large Initial Window (4 
MSS)

Spend long time in 
Slow Start

Long propagation 
delay

End-to-End TCP Solution
(Flavors and Extensions)

TCP ProblemsSatellite Hybrid 
Network

Other mechanisms: Path MTU discovery, Forward Error 
Correction, Ack filtering.
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Experiment setup

SACK and Window ScalingWindow Scaling
Selective AcknowledgeSACK
Fast Retransmit and Fast RecoveryReno
Fast RetransmitTahoe
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End-to-End TCP Performance
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Unsolved problems

Small operational window
Large propagation, slow start and link layer corruption
RecvWin / GndRTT = SatWin / SatRTT
Throughput=min (SatBW, Buff / (SatRTT + GndRTT))
Backlog packets=max(o,Buff–SatBW*(SatRTT+TerrRTT)) 

BER=1E-7
DS1=1,544,000bps
RTT=580ms
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Unsolved problems (cont.)

Asymmetric link
Congestion in reverse link: ACK filtering, Priority Queue

TCP Fairness
TCP throughput is inverse proportional to RTT, so TCP 
connection with large RTT does not get its fair share of 
the bandwidth when it competes with the connections 
with shorter RTT 
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TCP Splitting Protocol

AeroTCP
Flow Control: Fixed window for each connection
Congestion Control: FIFO Channel, No congestion
Error Control: One duplicated ACK for fast retransmission and 
partial ACK for burst loss recovery
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TCP splitting protocol performance
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Study Scenario: 2 Connections, TCP/IP/PPP, FTP application, File
size=1.6MB, DS1=1,544,000bps, RTT=580ms (500ms for satellite 
link and 80ms for terrestrial link)

AeroTCP (Our scheme), TCP splitting (TCP SACK for both 
connections), and End-to-End TCP
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Conclusion

We observed degradation in TCP performance for large 
bandwidth-delay product networks such as aeronautical 
satellite systems. If the right TCP options are used and 
congestion is light, TCP can work well for large file 
transfers even over GEO links. 
It is difficult for an end-to-end TCP solution to solve the 
problems in the aeronautical satellite networks, our 
connection splitting based solution, AeroTCP, can 
maintain high utilization of the satellite link and has 
better performance than end-to-end solutions.
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Future Work

Modeling the realistic Ka-band satellite channel 
(Uniform BER in OPNET, burst error)
Support other applications and services (FTP, 
HTTP, TELNET, Email, Telephone, Video)
Support more aircraft and global coverage (MAC 
layer protocol, spot beam handover, ISI)




